Babyfood Cereal Whole Wheat With Apples Dry Fortified

Fat & Proteins & Carbs

Macronutrients are made up of carbohydrates, fats and proteins. Their purpose is to provide energy to our body and to ensure the proper functioning of vital functions. A good distribution of macros, according to its needs, its morphology and its physical activity, allows to optimize its results, whether it is within the framework of a weight loss or a muscle gain.

100 g = 402 Calories

Babyfood Cereal Whole Wheat With Apples Dry Fortified belongs to the Baby Foods food group.
You have 402 calories from 100 grams.The serving weight is 15g1/2 Oz which is equivalent to 60 calories.

Percent Daily Value

The % Daily Value (DV) tells you how much a nutrient in a serving of food contributes to a daily diet.
You can get an estimate of the number of calories you need daily based on criteria such as age, gender, weight, height and activity on our calculator

Women

402 Calories = 20% of Daily Value

DVs are based on a 2,000-calorie diet for healthy adults women.

Men

402 Calories = 16% of Daily Value

DVs are based on a 2,500-calorie diet for healthy adults men.

Estimated amounts of calories needed

.Calories needed to maintain the energy balance of different age groups at three different levels of physical activity.

  • Sedentary means a lifestyle that includes only light physical activity associated with typical daily living.
  • Moderately active means a lifestyle that includes physical activity equivalent to walking approximately 1.5 to 3 miles per day at a speed of 3 to 4 miles per hour, in addition to the light physical activity associated with typical daily living.
  • Active means a lifestyle that includes physical activity equivalent to walking more than 3 miles per day at a speed of 3 to 4 miles per hour, in addition to the light physical activity associated with typical daily living.

How long would it take to burn off 402 calories?

Everyone’s metabolism is responsible for turning food into energy. Being a natural process of our body, metabolism is best activated by exercise to burn calories. Some factors that define this process are body structure, gender and age.

How Long Does It Take to Burn 402 calories for a 125-pound person :

Aerobics. Step: low impact: 48 mn
Gymnastics: general : 84 mn
Snow Shoeing : 42 mn
Running: cross-country : 38 mn
Playing w/kids: moderate effort : 86 mn

How Long Does It Take to Burn 402 calories for a 155-pound person :

Calisthenics: moderate : 74 mn
Gymnastics: general : 84 mn
Ice Skating: general : 48 mn
Running: 7.5 mph (8 min/mile) : 27 mn
Standing in line : 345 mn

How Long Does It Take to Burn 402 calories for a 185-pound person :

Aerobics: water : 72 mn
Gymnastics: general : 48 mn
Ice Skating: general : 41 mn
Running: 7.5 mph (8 min/mile) : 64 mn
Standing in line : 464 mn

Comparison with ordinary products

This table lists the amount of calories in 100g of different everyday foods. For the same amount you can easily compare the calories of these foods with Babyfood Cereal Whole Wheat With Apples Dry Fortified. For information, 100g of Nutella contains 539 calories, 100g of French Fries contains 312 calories, 100g of Pizza contains 266 calories, 100g of Chicken contains 239 calories, 100g of Pasta contains 131 calories, 100g of Rice contains 130c calories, 100g of Banana contains 89 calories.

Pros and Cons

High calorie density

With 402 calories per 100 grams, Babyfood Cereal Whole Wheat With Apples Dry Fortified would be considered a High calorie density food. Be careful, high calorie density foods tend to add up calories quickly and you need to be careful about your portion sizes if you are trying to lose weight.

High Calcium density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Calcium, an average adults needs 1300 mg of Calcium per day. 100 grams have 600 mg of Calcium, 46% of your total daily needs.

High Carbohydrate density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Carbohydrate, an average adults needs 275 g of Carbohydrate per day. 100 grams have 83.2 g of Carbohydrate, 30% of your total daily needs.

High Copper density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Copper, an average adults needs 0.9 mg of Copper per day. 100 grams have 0.62 mg of Copper, 69% of your total daily needs.

High Fiber density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Fiber, an average adults needs 28 g of Fiber per day. 100 grams have 6.7 g of Fiber, 24% of your total daily needs.

High Folate density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Folate B9, an average adults needs 400 mcg of Folate B9 per day. 100 grams have 166 mcg of Folate B9, 42% of your total daily needs.

High Iron density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Iron, an average adults needs 18 mg of Iron per day. 100 grams have 45 mg of Iron, 250% of your total daily needs.

High Magnesium density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Magnesium, an average adults needs 420mg g of Magnesium per day. 100 grams have 140 mg of Magnesium, 33% of your total daily needs.

High Manganese density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Manganese, an average adults needs 2,3 mg of Manganese per day. 100 grams have 2.52 mg of Manganese, 110% of your total daily needs.

High Niacin density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Niacin B3, an average adults needs 16 mg of Niacin B3 per day. 100 grams have 13.33 mg of Niacin B3, 83% of your total daily needs.

High Riboflavin density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Riboflavin B2, an average adults needs 1.3 g of Riboflavin B2 per day. 100 grams have 1 mg of Riboflavin B2, 77% of your total daily needs.

High Selenium density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Selenium, an average adults needs 55 mcg of Selenium per day. 100 grams have 64.7 mcg of Selenium, 118% of your total daily needs.

High Sugars density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Sugars, an average adults needs 50 g of Sugars per day. 100 grams have 26.66 g of Sugars, 53% of your total daily needs.

High Thiamin density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Thiamin B1, an average adults needs 1.2 g of Thiamin B1 per day. 100 grams have 0.33 mg of Thiamin B1, 28% of your total daily needs.

High Vitamin B6 density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Vitamin B6, an average adults needs 1.7 mcg of Vitamin B6 per day. 100 grams have 0.66 mcg of Vitamin B6, 39% of your total daily needs.

High Vitamin B12 density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Vitamin B12, an average adults needs 2.4 mcg of Vitamin B12 per day. 100 grams have 3.33 mcg of Vitamin B12, 139% of your total daily needs.

High Vitamin C density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Vitamin C, an average adults needs 90 mg of Vitamin C per day. 100 grams have 58.3 mg of Vitamin C, 65% of your total daily needs.

High Vitamin C density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Vitamin C, an average adults needs 90 mg of Vitamin C per day. 100 grams have 58.3 mg of Vitamin C, 65% of your total daily needs.

High Zinc density

Babyfood Cereal Whole Wheat With Apples Dry Fortified is high in Zinc, an average adults needs 11 mg of Added Sugars per day. 100 grams have 2.6 mg of Zinc, 24% of your total daily needs.

Quick stats

These quick stats highlight the main nutritional characteristics of Pillsbury Golden Layer Buttermilk Biscuits Artificial Flavor Refrigerated Dough

Nutrition Facts

The Nutrition Facts label is required by the Food and Drug Administration (FDA) on most packaged foods and beverages. The Nutrition Facts label provides detailed information about the nutrient content of a food, such as the amount of fat, sugar, sodium and fibre it contains.

Nutrition Facts

Serving Size 100g

,

Calories 402Calories from Fat 43
% Daily Value*20
Total Fat 4.8 g6%
Satured Fat 0.639 g3%
Trans Fat 0 g
Cholesterol 0 mg0%
Sodium 66 mg3%
Total Carbohydrate 83.2 g30%
Dietary Fiber 6.7 g24%
Sugars 26.66 g53%
Protein 6.6 g13%
Vitamin A 0%Vitamin C 65%
Calcium 46%Iron 250%

Nutrition Elements by %DV

Macronutrients by Daily Value (%DV)

Minerals by Daily Value (%DV)

Vitamins by Daily Value (%DV)

Nutrition Elements Summary

Macronutrients

Minerals

Vitamins

Others

Carbs and Sugars

Fats

Amino Acids

Glossary

Source: Nutrient data for this listing was provided by USDA
Where do the calories come from ?
Macronutrients are made up of carbohydrates, fats and proteins. Their purpose is to provide energy to our body and to ensure the proper functioning of vital functions. A good distribution of macros, according to its needs, its morphology and its physical activity, allows to optimize its results, whether it is within the framework of a weight loss or a muscle gain.
To calculate its macronutrients we must calculate in grams, calories or percentage, the amounts of protein, fat and carbohydrates that our body needs to be at the top of its form. The official distribution recommendations for a healthy and balanced diet are as follows:
Carbohydrates: 55%
Protein: 15%
Fat: 30%

Calcium is by far the most abundant metallic element in the body (1 to 2% by mass). It is mainly stored in the bones, of which it is an integral part. It contributes to the formation of the latter, as well as that of the teeth, and to the maintenance of their health. The mechanisms for maintaining a normal plasma ionized calcium concentration are, if necessary, at the expense of the skeleton and too great a decrease in calcium intake as well as an increase in excretion poses a risk to the skeleton and health. (osteoporosis in adults, rickets in children, increased risk of lead poisoning, etc.).
Calcium also plays an essential role in blood clotting, the maintenance of blood pressure and the contraction of muscles, including the heart, through its importance in neuromuscular functions. It is involved in the functioning of many enzymatic processes.
https://en.wikipedia.org/wiki/Calcium

The International Union of Pure and Applied Chemistry (IUPAC) defines carbohydrates as a class of organic compounds containing one carbonyl group (aldehyde or ketone) and at least two hydroxyl groups (-OH). Included in this class are substances derived from monosaccharides by reduction of the carbonyl group, by oxidation of at least one functional group at the end of the chain to a carboxylic acid or by replacement of one or more hydroxyl groups by an atom of hydrogen, an amino group, a thiol group or any similar atom.
https://en.wikipedia.org/wiki/Carbohydrate

Copper is a trace element essential for life (humans, plants, animals, and micro-organisms). The human body normally contains copper at a concentration of about 1.4 to 2.1 mg per kg. Copper is found in the liver, muscles and bones. Copper is carried in the bloodstream by means of a protein called ceruleoplasmin71. After copper is absorbed from the intestine, it is transported to the liver, bound to albumin. The metabolism and excretion of copper is controlled by the delivery of ceruleoplasmin to the liver, and the copper is excreted in the bile. At the cellular level, copper is present in a number of enzymes and proteins, including cytochrome c oxidase and certain superoxide dismutases (SOD). Copper is used for the biological transport of electrons, e.g. the “copper blue” proteins, azurine and plastocyanine. The name “copper blue” comes from their intense blue color due to an absorption band (around 600 nm) by ligand / metal charge transfer (LMCT). Many mollusks and some arthropods, such as horseshoe crab, use a copper-based pigment, hemocyanin, for oxygen transport, rather than hemoglobin, which has an iron nucleus, and their blood is therefore blue, and not red, when it is oxygenated72.
https://en.wikipedia.org/wiki/Copper

Fiber: Fiber is a substance of plant origin that is neither digested nor absorbed by our digestive tract. However, our intestinal flora, by breaking them down, allows us to absorb carbohydrates in a variable and partial way, hence their participation in our energy intake. They therefore have an effect on our transit, but also allow us to reduce our energy intake (the satiating effect of Fiber), lower our total cholesterol level and limit the increase in blood sugar levels after a meal.
https://en.wikipedia.org/wiki/Fiber

Vitamin B9, another name for folic acid (folate, folacin or vitamin M, pteroyl-L-glutamic acid, pteroyl-L-glutamate and pteroylmonoglutamic acid), is a water soluble vitamin.
Folic acid is the metabolic precursor of a coenzyme, tetrahydrofolate (FH4 or THF4), involved in particular in the synthesis of nucleic bases, purines and pyrimidines, constituting the nucleic acids (DNA and RNA) of the genetic material. THF is also involved in the synthesis of amino acids such as methionine, histidine and serine.
https://en.wikipedia.org/wiki/Folate

Iron is a trace element and is one of the essential mineral salts found in food, but can be toxic in some forms. An iron deficiency is a source of anemia and can affect the cognitive and socio-emotional development of the childs brain or exacerbate the effects of certain intoxications (lead poisoning, for example).
https://en.wikipedia.org/wiki/Iron

Magnesium is involved in more than 400 biochemical reactions. It is particularly involved in the osmotic transport of glucose, the insulin transport of glucose and in all stages of energy production. A major mechanism of biochemical activation, consisting of adding a phosphate group to a protein, magnesium is a cofactor of phosphorylation. It is also an actor in homeostasis, a mechanism allowing the conservation of an internal balance (cell, heart rate, urination, digestion, body temperature, etc.) and an essential cofactor in the polymerization of nucleic acids.
https://en.wikipedia.org/wiki/Magnesium

Manganese is a trace element (necessary for humans to survive), manganese deficiency (less than 2 to 3 mg / day for an average adult), leads – depending on the animal model – to reproductive disorders for both sexes, bone malformations, depigmentations, ataxia and alteration of the central nervous system.
https://en.wikipedia.org/wiki/Manganese

B vitamins facilitate the conversion of food (carbohydrates) into energy (glucose). Niacin is helpful in the process of regulating stress hormones and improves blood circulation. These vitamins are water soluble and the body does not store them.
https://en.wikipedia.org/wiki/Niacin

A precursor and constituent of coenzyme A, vitamin B5 promotes the growth and resistance of the skin and mucous membranes. It is necessary for the metabolism of carbohydrates, lipids and proteins and participates in the synthesis of certain hormones. Pantothenic acid is destroyed by heat in aqueous solution.
https://en.wikipedia.org/wiki/Pantothenic_acid/a>

Inorganic phosphorus in the form of the phosphate PO3−4 is required for all known forms of life. Phosphorus plays a major role in the structural framework of DNA and RNA. Living cells use phosphate to transport cellular energy with adenosine triphosphate (ATP), necessary for every cellular process that uses energy. ATP is also important for phosphorylation, a key regulatory event in cells. Phospholipids are the main structural components of all cellular membranes. Calcium phosphate salts assist in stiffening bones. Biochemists commonly use the abbreviation “Pi” to refer to inorganic phosphate.
https://en.wikipedia.org/wiki/Phosphorus

Potassium is an essential nutrient in the human diet.
Potassium in the form of the cation K+ is the major intracellular ion in the body. There is a concentration gradient in favor of the exit of the ion from the intracellular compartment to the extracellular compartment. This gradient is maintained by pumps located in the cell membranes, in particular the sodium-potassium pump is responsible for the existence of a negative resting potential present in all living cells.
https://en.wikipedia.org/wiki/Potassium

Vitamin B2, corresponding to riboflavin, or lactoflavin, is a water-soluble vitamin necessary for the synthesis of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), two cofactors essential to flavoproteins.
Vitamin B2 plays an important role in transforming simple foods (carbohydrates, fats and proteins) into energy. It is involved in the repair metabolism of the muscles.
https://en.wikipedia.org/wiki/Riboflavin

Selenium is a trace element that is a constituent of selenoproteins, which include the main intracellular antioxidant, glutathione peroxidase . It is found in eggs (16-48% of the average daily requirement, depending on whether it is a duck, chicken, goose or turkey egg and on the farming system) , pork or beef kidneys, garlic, fish and shellfish. Western nutrition more than meets daily requirements for this element , but it is impossible to predict body selenium levels from dietary intake because its utilization and retention are dependent on the presence of folic acid, vitamin B12 and negatively affected by the presence of homocysteine.
https://en.wikipedia.org/wiki/Selenium

Consuming sugar provides short-term chemical energy, but it is not a form of energy storage for the body. Some of the sugar consumed can be used immediately for energy if needed within minutes, some will be stored in the liver and muscles (as glycogen) for use within hours, and, if there is an excess, some will be converted to fat (triglycerides) for storage in fat cells.
As soon as we consume glucose, a component of sugar, insulin is secreted: its main role is to promote the use of glucose by all the cells in the body. Insulin also stimulates glycolysis, blocks lipolysis (use of stored fat) and promotes lipogenesis through an enzyme (triglyceride synthase), i.e. the production of fat in adipose tissue. Indeed, the hepatic glycogen stock is limited and the muscular glycogen can only be used by the muscles themselves.
This regulation of glucose, with a system of storage and release, provides a continuous supply of glucose to the brain. Although the brain accounts for only 2% of body weight, it uses 20% to 30% of the available glucose, which is its only source of energy (apart from ketone bodies synthesized during prolonged fasting).

Thiamine or vitamin B1 (or aneurine) is a metabolic precursor of thiamine pyrophosphate (TPP), a coenzyme essential to certain decarboxylases. In animals, thiamine is a water-soluble vitamin from the family of B vitamins that they must find in their diet. On the other hand, it is synthesized by bacteria, plants and fungi. It is essential for the transformation of carbohydrates into energy by the Krebs cycle and is necessary for the proper functioning of the nervous system and muscles. It is in fact essential for the transformation of pyruvate produced by glycolysis and toxic for the nervous system.
In humans, a dietary vitamin B1 deficiency causes beriberi and can also cause Gayet-Wernicke encephalopathy.
https://en.wikipedia.org/wiki/Thiamine

Vitamin B6 is a water-soluble vitamin represented by three main forms: pyridoxine, pyridoxal, and pyridoxamine.
Present in a wide variety of plant and animal foods, it is necessary for proper cell function, particularly the nervous system and skin.
Isolated B6 deficiency is rare. It is most often associated with multiple vitamin deficiencies, particularly the other B vitamins. These deficiencies are observed in particular in chronic alcoholics.
https://en.wikipedia.org/wiki/Vitamin_B6

Vitamin B12, also known as cobalamin, is a water-soluble vitamin essential to the normal functioning of the brain (it participates in the synthesis of neurotransmitters), the nervous system (it is essential for maintaining the integrity of the nervous system and especially the myelin sheath that protects the nerves and optimizes their functioning) and for the formation of blood. It is one of the eight B vitamins. It is normally involved as a cofactor in the metabolism of every cell in the human body, especially in the synthesis of DNA and its regulation, as well as in the synthesis of fatty acids and in energy production.
It exists in several forms belonging to the cobalamin family: cyanocobalamin, hydroxocobalamin, methylcobalamin and adenosylcobalamin, the first two being its stable forms. Cobalamins have a chemical structure similar to heme but the central iron atom is replaced by a cobalt atom, hence their name.
https://en.wikipedia.org/wiki/Vitamin_B_12

Vitamin C is an enzymatic cofactor involved in a number of physiological reactions (hydroxylation). It is required in the synthesis of collagen and red blood cells and contributes to the immune system3. It also plays a role in iron metabolism as a promoter of its absorption, its use is therefore not recommended in patients with iron overload and particularly hemochromatosis. In its oxidized form (dehydroascorbic acid), it crosses the blood-brain barrier to reach the brain4 and several organs with high vitamin C concentrations. Skeletal muscle responds quickly to vitamin C intake, but also loses it quickly if the vitamin is not taken in sufficiently5. It is an antioxidant, a molecule capable of countering the harmful action of oxidants such as radicals. D-ascorbic acid is also used for this purpose, but unlike L-ascorbic acid, it has no vitamin activity.
https://en.wikipedia.org/wiki/Vitamin_C

Vitamin E is a fat-soluble vitamin covering a set of eight organic molecules, four tocopherols and four tocotrienols. The most biologically active form is α-tocopherol, the most abundant in the diet being γ-tocopherol. These molecules are present in large quantities in vegetable oils. They act, along with vitamin C and glutathione, essentially as antioxidants against reactive oxygen derivatives produced in particular by the oxidation of fatty acids.
https://en.wikipedia.org/wiki/Vitamin_E

In very small quantities, zinc in assimilable form is an important trace element, essential to plant and animal organisms. When properly assimilated by organisms, it activates enzymes, influences growth, and promotes biochemical reactions and controls in the lung surfaces. The human body contains 2 g to 4 g. Daily requirements can be estimated at a minimum of 15 mg for a normal man, and up to twice that amount for a nursing woman.
Zinc is contained in a variety of yeasts (up to 100 mg per kilogram), in red beef (in the range of 50 mg to 120 mg per kilogram), and in a variety of commercial foods.
The bioavailability of zinc in food is not known. The bioavailability of zinc from plants is sometimes questioned. While it is true that plants contain antinutrients that decrease zinc absorption, zinc deficiency does not appear to be more common among vegans.
https://en.wikipedia.org/wiki/Zinc