Grape Leaves Raw

Fat & Proteins & Carbs

Macronutrients are made up of carbohydrates, fats and proteins. Their purpose is to provide energy to our body and to ensure the proper functioning of vital functions. A good distribution of macros, according to its needs, its morphology and its physical activity, allows to optimize its results, whether it is within the framework of a weight loss or a muscle gain.

100 g = 93 Calories

Grape Leaves Raw belongs to the Vegetables food group.
You have 93 calories from 100 grams.The serving weight is 14g1 Cup which is equivalent to 13 calories.

Percent Daily Value

The % Daily Value (DV) tells you how much a nutrient in a serving of food contributes to a daily diet.
You can get an estimate of the number of calories you need daily based on criteria such as age, gender, weight, height and activity on our calculator

Women

93 Calories = 5% of Daily Value

DVs are based on a 2,000-calorie diet for healthy adults women.

Men

93 Calories = 4% of Daily Value

DVs are based on a 2,500-calorie diet for healthy adults men.

Estimated amounts of calories needed

.Calories needed to maintain the energy balance of different age groups at three different levels of physical activity.

  • Sedentary means a lifestyle that includes only light physical activity associated with typical daily living.
  • Moderately active means a lifestyle that includes physical activity equivalent to walking approximately 1.5 to 3 miles per day at a speed of 3 to 4 miles per hour, in addition to the light physical activity associated with typical daily living.
  • Active means a lifestyle that includes physical activity equivalent to walking more than 3 miles per day at a speed of 3 to 4 miles per hour, in addition to the light physical activity associated with typical daily living.

How long would it take to burn off 93 calories?

Everyone’s metabolism is responsible for turning food into energy. Being a natural process of our body, metabolism is best activated by exercise to burn calories. Some factors that define this process are body structure, gender and age.

How Long Does It Take to Burn 93 calories for a 125-pound person :

Aerobics: high impact: 11 mn
Gymnastics: general : 19 mn
Running: 5 mph (12 min/mile) : 10 mn
Running: 10 mph (6 min/mile) : 5 mn
Cooking : 40 mn

How Long Does It Take to Burn 93 calories for a 155-pound person :

Weight Lifting: vigorous : 13 mn
Skiing: downhill : 13 mn
Bicycling: 12-13.9 mph : 10 mn
Water Polo : 8 mn
Standing in line : 80 mn

How Long Does It Take to Burn 93 calories for a 185-pound person :

Weight Lifting: general : 22 mn
Skiing: downhill : 11 mn
Bicycling: 12-13.9 mph : 6 mn
Water Polo : 6 mn
Standing in line : 17 mn

Comparison with ordinary products

This table lists the amount of calories in 100g of different everyday foods. For the same amount you can easily compare the calories of these foods with Grape Leaves Raw. For information, 100g of Nutella contains 539 calories, 100g of French Fries contains 312 calories, 100g of Pizza contains 266 calories, 100g of Chicken contains 239 calories, 100g of Pasta contains 131 calories, 100g of Rice contains 130c calories, 100g of Banana contains 89 calories.

Pros and Cons

Low calorie density foods

With 93 calories per 100 grams, Grape Leaves Raw be considered a Low calorie density food. Low calorie density generally indicates that you can consume a larger amount of food with fewer calories and are generally good choices when dieting.

High Calcium density

Grape Leaves Raw is high in Calcium, an average adults needs 1300 mg of Calcium per day. 100 grams have 363 mg of Calcium, 28% of your total daily needs.

High Copper density

Grape Leaves Raw is high in Copper, an average adults needs 0.9 mg of Copper per day. 100 grams have 0.415 mg of Copper, 46% of your total daily needs.

Low Fat

Grape Leaves Raw is high in Fat, an average adults needs 78 g of Fat per day. 100 grams have 2.12 g of Fat, 3% of your total daily needs.

High Fiber density

Grape Leaves Raw is high in Fiber, an average adults needs 28 g of Fiber per day. 100 grams have 11 g of Fiber, 39% of your total daily needs.

High Folate density

Grape Leaves Raw is high in Folate B9, an average adults needs 400 mcg of Folate B9 per day. 100 grams have 83 mcg of Folate B9, 21% of your total daily needs.

High Magnesium density

Grape Leaves Raw is high in Magnesium, an average adults needs 420mg g of Magnesium per day. 100 grams have 95 mg of Magnesium, 23% of your total daily needs.

High Manganese density

Grape Leaves Raw is high in Manganese, an average adults needs 2,3 mg of Manganese per day. 100 grams have 2.855 mg of Manganese, 124% of your total daily needs.

High Riboflavin density

Grape Leaves Raw is high in Riboflavin B2, an average adults needs 1.3 g of Riboflavin B2 per day. 100 grams have 0.354 mg of Riboflavin B2, 27% of your total daily needs.

High Vitamin A density

Grape Leaves Raw is high in Vitamin A, an average adults needs 900 mcg of Vitamin A per day. 100 grams have 1376 mcg of Vitamin A, 153% of your total daily needs.

High Vitamin B6 density

Grape Leaves Raw is high in Vitamin B6, an average adults needs 1.7 mcg of Vitamin B6 per day. 100 grams have 0.4 mcg of Vitamin B6, 24% of your total daily needs.

High Vitamin K density

Grape Leaves Raw is high in Vitamin K, an average adults needs 120 mcg of Vitamin K per day. 100 grams have 108.6 mcg of Vitamin K, 91% of your total daily needs.

Quick stats

These quick stats highlight the main nutritional characteristics of Pillsbury Golden Layer Buttermilk Biscuits Artificial Flavor Refrigerated Dough

Nutrition Facts

The Nutrition Facts label is required by the Food and Drug Administration (FDA) on most packaged foods and beverages. The Nutrition Facts label provides detailed information about the nutrient content of a food, such as the amount of fat, sugar, sodium and fibre it contains.

Nutrition Facts

Serving Size 100g

,

Calories 93Calories from Fat 19
% Daily Value*5
Total Fat 2.12 g3%
Satured Fat 0.336 g2%
Trans Fat 0 g
Cholesterol 0 mg0%
Sodium 9 mg0%
Total Carbohydrate 17.31 g6%
Dietary Fiber 11 g39%
Sugars 6.3 g13%
Protein 5.6 g11%
Vitamin A 153%Vitamin C 12%
Calcium 28%Iron 15%

Nutrition Elements by %DV

Macronutrients by Daily Value (%DV)

Minerals by Daily Value (%DV)

Vitamins by Daily Value (%DV)

Nutrition Elements Summary

Macronutrients

Minerals

Vitamins

Others

Carbs and Sugars

Fats

Amino Acids

Glossary

Source: Nutrient data for this listing was provided by USDA
Where do the calories come from ?
Macronutrients are made up of carbohydrates, fats and proteins. Their goal is to provide energy to our body and to ensure the proper functioning of vital functions. A good distribution of macros, according to its needs, its morphology and its physical activity, allows to optimize its results, whether in the context of weight loss or muscle gain.
To calculate its macronutrients we must calculate in grams, calories or percentage, the amounts of protein, fat and carbohydrates that our body needs to be at the top of its form. The official distribution recommendations for a healthy and balanced diet are as follows:
Carbohydrates: 55%
Protein: 15%
Fat: 30%

Calcium is by far the most abundant metallic element in the body (1 to 2% by mass). It is mainly stored in the bones, of which it is an integral part. It contributes to the formation of the latter, as well as that of the teeth, and to the maintenance of their health. The mechanisms for maintaining a normal plasma ionized calcium concentration are, if necessary, at the expense of the skeleton and too great a decrease in calcium intake as well as an increase in excretion poses a risk to the skeleton and health. (osteoporosis in adults, rickets in children, increased risk of lead poisoning, etc.).
Calcium also plays an essential role in blood clotting, the maintenance of blood pressure and the contraction of muscles, including the heart, through its importance in neuromuscular functions. It is involved in the functioning of many enzymatic processes.
https://en.wikipedia.org/wiki/Calcium

Copper is a trace element essential for life (humans, plants, animals, and micro-organisms). The human body normally contains copper at a concentration of about 1.4 to 2.1 mg per kg. Copper is found in the liver, muscles and bones. Copper is carried in the bloodstream by means of a protein called ceruleoplasmin71. After copper is absorbed from the intestine, it is transported to the liver, bound to albumin. The metabolism and excretion of copper is controlled by the delivery of ceruleoplasmin to the liver, and the copper is excreted in the bile. At the cellular level, copper is present in a number of enzymes and proteins, including cytochrome c oxidase and certain superoxide dismutases (SOD). Copper is used for the biological transport of electrons, e.g. the “copper blue” proteins, azurine and plastocyanine. The name “copper blue” comes from their intense blue color due to an absorption band (around 600 nm) by ligand / metal charge transfer (LMCT). Many mollusks and some arthropods, such as horseshoe crab, use a copper-based pigment, hemocyanin, for oxygen transport, rather than hemoglobin, which has an iron nucleus, and their blood is therefore blue, and not red, when it is oxygenated72.
https://en.wikipedia.org/wiki/Copper

Fiber: Fiber is a substance of plant origin that is neither digested nor absorbed by our digestive tract. However, our intestinal flora, by breaking them down, allows us to absorb carbohydrates in a variable and partial way, hence their participation in our energy intake. They therefore have an effect on our transit, but also allow us to reduce our energy intake (the satiating effect of Fiber), lower our total cholesterol level and limit the increase in blood sugar levels after a meal.
https://en.wikipedia.org/wiki/Fiber

Vitamin B9, another name for folic acid (folate, folacin or vitamin M, pteroyl-L-glutamic acid, pteroyl-L-glutamate and pteroylmonoglutamic acid), is a water soluble vitamin.
Folic acid is the metabolic precursor of a coenzyme, tetrahydrofolate (FH4 or THF4), involved in particular in the synthesis of nucleic bases, purines and pyrimidines, constituting the nucleic acids (DNA and RNA) of the genetic material. THF is also involved in the synthesis of amino acids such as methionine, histidine and serine.
https://en.wikipedia.org/wiki/Folate

Iron is a trace element and is one of the essential mineral salts found in food, but can be toxic in some forms. An iron deficiency is a source of anemia and can affect the cognitive and socio-emotional development of the childs brain or exacerbate the effects of certain intoxications (lead poisoning, for example).
https://en.wikipedia.org/wiki/Iron

Magnesium is involved in more than 400 biochemical reactions. It is particularly involved in the osmotic transport of glucose, the insulin transport of glucose and in all stages of energy production. A major mechanism of biochemical activation, consisting of adding a phosphate group to a protein, magnesium is a cofactor of phosphorylation. It is also an actor in homeostasis, a mechanism allowing the conservation of an internal balance (cell, heart rate, urination, digestion, body temperature, etc.) and an essential cofactor in the polymerization of nucleic acids.
https://en.wikipedia.org/wiki/Magnesium

Manganese is a trace element (necessary for humans to survive), manganese deficiency (less than 2 to 3 mg / day for an average adult), leads – depending on the animal model – to reproductive disorders for both sexes, bone malformations, depigmentations, ataxia and alteration of the central nervous system.
https://en.wikipedia.org/wiki/Manganese

B vitamins facilitate the conversion of food (carbohydrates) into energy (glucose). Niacin is helpful in the process of regulating stress hormones and improves blood circulation. These vitamins are water soluble and the body does not store them.
https://en.wikipedia.org/wiki/Niacin

Vitamin B2, corresponding to riboflavin, or lactoflavin, is a water-soluble vitamin necessary for the synthesis of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), two cofactors essential to flavoproteins.
Vitamin B2 plays an important role in transforming simple foods (carbohydrates, fats and proteins) into energy. It is involved in the repair metabolism of the muscles.
https://en.wikipedia.org/wiki/Riboflavin

Consuming sugar provides short-term chemical energy, but it is not a form of energy storage for the body. Some of the sugar consumed can be used immediately for energy if needed within minutes, some will be stored in the liver and muscles (as glycogen) for use within hours, and, if there is an excess, some will be converted to fat (triglycerides) for storage in fat cells.
As soon as we consume glucose, a component of sugar, insulin is secreted: its main role is to promote the use of glucose by all the cells in the body. Insulin also stimulates glycolysis, blocks lipolysis (use of stored fat) and promotes lipogenesis through an enzyme (triglyceride synthase), i.e. the production of fat in adipose tissue. Indeed, the hepatic glycogen stock is limited and the muscular glycogen can only be used by the muscles themselves.
This regulation of glucose, with a system of storage and release, provides a continuous supply of glucose to the brain. Although the brain accounts for only 2% of body weight, it uses 20% to 30% of the available glucose, which is its only source of energy (apart from ketone bodies synthesized during prolonged fasting).

Vitamin A is a fat soluble vitamin.
In the body, it exists as retinol, retinal, retinoic acid (tretinoin) and retinyl phosphate. These molecules are altered by oxygen in the air, alterations accelerated by light and heat.
Foods of animal origin (meat, dairy products and especially liver) contain retinol and retinol esters while plants mainly contain carotenes which are precursors of retinol. A beta-carotene molecule, by hydrolysis of the 15-15 ′ bond under the influence of a carotenoid mono-oxygenase (ββ-carotene 15,15 ′ mono-oxygenase), gives two molecules of vitamin A. On the other hand, the other two carotenes (alpha and gamma) only give rise to a single vitamin A molecule.
https://en.wikipedia.org/wiki/Vitamin_A

Vitamin B6 is a water-soluble vitamin represented by three main forms: pyridoxine, pyridoxal, and pyridoxamine.
Present in a wide variety of plant and animal foods, it is necessary for proper cell function, particularly the nervous system and skin.
Isolated B6 deficiency is rare. It is most often associated with multiple vitamin deficiencies, particularly the other B vitamins. These deficiencies are observed in particular in chronic alcoholics.
https://en.wikipedia.org/wiki/Vitamin_B6

Vitamin C is an enzymatic cofactor involved in a number of physiological reactions (hydroxylation). It is required in the synthesis of collagen and red blood cells and contributes to the immune system3. It also plays a role in iron metabolism as a promoter of its absorption, its use is therefore not recommended in patients with iron overload and particularly hemochromatosis. In its oxidized form (dehydroascorbic acid), it crosses the blood-brain barrier to reach the brain4 and several organs with high vitamin C concentrations. Skeletal muscle responds quickly to vitamin C intake, but also loses it quickly if the vitamin is not taken in sufficiently5. It is an antioxidant, a molecule capable of countering the harmful action of oxidants such as radicals. D-ascorbic acid is also used for this purpose, but unlike L-ascorbic acid, it has no vitamin activity.
https://en.wikipedia.org/wiki/Vitamin_C

Vitamin E is a fat-soluble vitamin covering a set of eight organic molecules, four tocopherols and four tocotrienols. The most biologically active form is α-tocopherol, the most abundant in the diet being γ-tocopherol. These molecules are present in large quantities in vegetable oils. They act, along with vitamin C and glutathione, essentially as antioxidants against reactive oxygen derivatives produced in particular by the oxidation of fatty acids.
https://en.wikipedia.org/wiki/Vitamin_E

The K vitamins are a group of fat-soluble vitamins required for the post-translational modifications of certain proteins involved primarily in blood coagulation but also in the metabolism of bones and other tissues. The use of the letter K comes from the German Koagulation.
They are mainly synthesized by bacteria fermenting certain cheeses or plants, intestinal bacteria, or come from food (especially green plant foods, as they are linked to chloroplasts). They are also found in animal fats.
They promote the synthesis of blood clotting factors, the fixation of calcium by the bones, the flexibility of arteries and the good condition of blood vessels in general, tendons, cartilage and other connective tissues. New properties have been discovered more recently, for example in the control of inflammatory states, in cell division, in cell migration, in cell specialization, etc.
https://en.wikipedia.org/wiki/Vitamin_K